982 research outputs found

    NASA Perspective on Requirements for Development of Advanced Methods Predicting Unsteady Aerodynamics and Aeroelasticity

    Get PDF
    Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they can be evaluated. However, researchers may be required to alter the geometries typically used in their analyses, the types of flows analyzed, and even the techniques by which computational tools are verified and validated. This paper discusses these issues and provides some perspective on the potential for new and innovative approaches to the development of methods to attack problems in nonlinear unsteady aerodynamics

    The Expanding Role of Applications in the Development and Validation of CFD at NASA

    Get PDF
    This paper focuses on the recent escalation in application of CFD to manned and unmanned flight projects at NASA and the need to often apply these methods to problems for which little or no previous validation data directly applies. The paper discusses the evolution of NASA.s CFD development from a strict Develop, Validate, Apply strategy to sometimes allowing for a Develop, Apply, Validate approach. The risks of this approach and some of its unforeseen benefits are discussed and tied to specific operational examples. There are distinct advantages for the CFD developer that is able to operate in this paradigm, and recommendations are provided for those inclined and willing to work in this environment

    NASA Aerosciences Perspective on Proposed De-Scope of Ares I-X Development Flight Instrumentation

    Get PDF
    This position paper is written as a result of a number of emails and a presentation that have recently been circulated concerning the potential reduction of Development Flight Instrumentation (DFI) to be included on the Ares I-X flight test vehicle. A reduction in instrumentation has been proposed presumably to reduce project costs and relieve project schedule pressures. This proposal has generated a significant amount of discussion on both sides of the issue, primarily from those within the project. The intention here is to provide a perspective on this issue from outside the mainline project

    Computation of aircraft component flow fields at transonic Mach numbers using a three-dimensional Navier-Stokes algorithm

    Get PDF
    A computer analysis was developed for calculating steady (or unsteady) three-dimensional aircraft component flow fields. This algorithm, called ENS3D, can compute the flow field for the following configurations: diffuser duct/thrust nozzle, isolated wing, isolated fuselage, wing/fuselage with or without integrated inlet and exhaust, nacelle/inlet, nacelle (fuselage) afterbody/exhaust jet, complete transport engine installation, and multicomponent configurations using zonal grid generation technique. Solutions can be obtained for subsonic, transonic, or hypersonic freestream speeds. The algorithm can solve either the Euler equations for inviscid flow, the thin shear layer Navier-Stokes equations for viscous flow, or the full Navier-Stokes equations for viscous flow. The flow field solution is determined on a body-fitted computational grid. A fully-implicit alternating direction implicit method is employed for the solution of the finite difference equations. For viscous computations, either a two layer eddy-viscosity turbulence model or the k-epsilon two equation transport model can be used to achieve mathematical closure

    Reacting Multi-Species Gas Capability for USM3D Flow Solver

    Get PDF
    The USM3D Navier-Stokes flow solver contributed heavily to the NASA Constellation Project (CxP) as a highly productive computational tool for generating the aerodynamic databases for the Ares I and V launch vehicles and Orion launch abort vehicle (LAV). USM3D is currently limited to ideal-gas flows, which are not adequate for modeling the chemistry or temperature effects of hot-gas jet flows. This task was initiated to create an efficient implementation of multi-species gas and equilibrium chemistry into the USM3D code to improve its predictive capabilities for hot jet impingement effects. The goal of this NASA Engineering and Safety Center (NESC) assessment was to implement and validate a simulation capability to handle real-gas effects in the USM3D code. This document contains the outcome of the NESC assessment

    Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    Get PDF
    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV

    Overview of the Aeroelastic Prediction Workshop

    Get PDF
    The AIAA Aeroelastic Prediction Workshop (AePW) was held in April, 2012, bringing together communities of aeroelasticians and computational fluid dynamicists. The objective in conducting this workshop on aeroelastic prediction was to assess state-of-the-art computational aeroelasticity methods as practical tools for the prediction of static and dynamic aeroelastic phenomena. No comprehensive aeroelastic benchmarking validation standard currently exists, greatly hindering validation and state-of-the-art assessment objectives. The workshop was a step towards assessing the state of the art in computational aeroelasticity. This was an opportunity to discuss and evaluate the effectiveness of existing computer codes and modeling techniques for unsteady flow, and to identify computational and experimental areas needing additional research and development. Three configurations served as the basis for the workshop, providing different levels of geometric and flow field complexity. All cases considered involved supercritical airfoils at transonic conditions. The flow fields contained oscillating shocks and in some cases, regions of separation. The computational tools principally employed Reynolds-Averaged Navier Stokes solutions. The successes and failures of the computations and the experiments are examined in this paper

    Supersymmetric Biorthogonal Quantum Systems

    Full text link
    We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V_{+/-}(z) = -U(z)^2 +/- z(d/(dz))U(z) where U(z) = \sum_{k>0}u_{k}z^{k}. In particular, we consider the cases generated by U(z) = z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.Comment: Changes are made to conform to the published version. In particular, some errors are corrected on pp 12-1

    Analysis of Test Case Computations and Experiments for the First Aeroelastic Prediction Workshop

    Get PDF
    This paper compares computational and experimental data from the Aeroelastic Prediction Workshop (AePW) held in April 2012. This workshop was designed as a series of technical interchange meetings to assess the state of the art of computational methods for predicting unsteady flowfields and static and dynamic aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques to simulate aeroelastic problems and to identify computational and experimental areas needing additional research and development. Three subject configurations were chosen from existing wind-tunnel data sets where there is pertinent experimental data available for comparison. Participant researchers analyzed one or more of the subject configurations, and results from all of these computations were compared at the workshop
    corecore